## 课程思政



**Ideological and Political Theories Teaching in All Course** 

# 物理实验课程思政"三位一体"的实践探索

一以单摆实验为例

方亮

苏州大学物理科学与技术学院 2020年08月10日

物理类专业教指委华东地区工作委员会第二次会议



## 课程思政

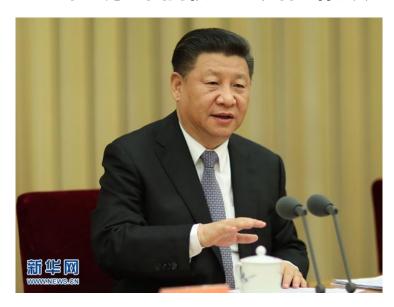


**Ideological and Political Theories Teaching in All Course** 



01 为什么要做物理实验课程思政?

02 物理实验课程思政当下如何做?


03 怎么看今后物理实验课程思政?

# 一、为什么要做物理实验课程思政



#### 课程思政认识的起点

2016年12月全国高校思想政治工作会议



要用好课堂教学这个主渠道,要守好一段渠、种好责任田,使各类课程与思想政治理论课同向同行,形成协同效应。

#### 课程思政认识的深化

2018年5月北京大学师生座谈会



人才培养体系必须立足于培养什么 人、怎样培养人这个根本问题来建 设,而贯通其中的是思想政治工 作体系。

### 课程思政认识的成型

2018年9月全国教育大会



要努力构建德智体美劳全面培养的教育体系,要把立德树人融入思想道德教育、文化知识教育、社会实践教育各环节,教师要围绕这个目标来教。

# 一、为什么要做物理实验课程思政



#### 课程思政内涵

### 课程思政落实的抓手

#### 核心概念

课程门门有思政 教师人人讲育人

#### 地位作用

教师队伍是"主力军" 课程建设是"主战场" 课堂教学是"主渠道"

#### 主要内容

做人做事的基本道理 社会主义核心价值观的要求 实现中华民族复兴的理想和责任

#### 开展方式

有机融入、如盐入水、润物无声

#### 教育部文件

教高[2020]3号

#### 教育部关于印发《高等学校课程思政建设 指导纲要》的通知

各省、自治区、直辖市教育厅(教委),新疆生产建设兵团教育局, 有关部门(单位)教育司(局),部屬各高等学校、部省合建各高等 学校:

《高等学校课程思政建设指导纲要》已经教育部党组会议审议通过,现印发给你们,请结合实际认真贯彻执行。



问题,培育学生经世济民、诚信服务、德法兼修的职业素养。

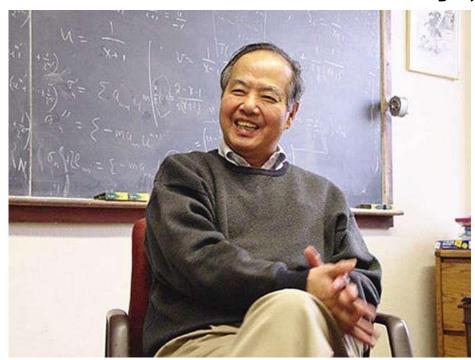
——教育学类专业课程。要在课程教学中注重加强师傅师风教育,突出课堂育德、典型树德、规则立德,引导学生树立学为人师、行为世苑的职业理想,培育爱国守法、规范从教的职业操守,培养学生传道情怀、授业底蕴、解惑能力,把对家国的爱、对教育的爱、对学生的爱融为一体,自觉以德立身、以德立学、以德施教,争做有理想信念,有道德情操、有扎实学识、有仁爱之心的"四有"好老师,坚定不移走中国特色社会主义教育发展道路。体育类课程要树立健康第一的教育理念,注重爱国主义教育和传统文化教育,培养学生顽强拼搏、奋斗有我的信念,激发学生提升全民族身体素质的希任成。

#### ——理学、工学类专业课程。要在课程教学中把马克思主义

立场观点方法的教育与科学精神的培养结合起来,提高学生正确 认识问题、分析问题和解决问题的能力。理学类专业课程,要注重 科学思维方法的训练和科学伦理的新官,按案学生概象来知、治求

强化学生工程化理教育,培养学生精益求精的大国工匠精神,激发 学生科技报国的家国情怀和使命担当。

——农学类专业课程。要在课程教学中加强生态文明教育, 引导学生树立和践行绿水青山就是金山银山的理念。要注重培养 学生的"大国三农"情怀,引导学生以强农兴农为已任,"懂农业、 爱农村、爱农民",树立把论文写在祖国大地上的意识和信念,增

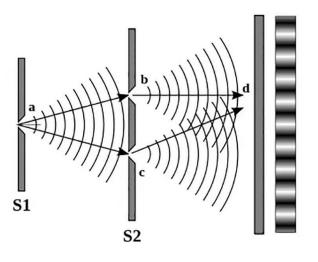

- / -

# 一、为什么要做物理实验课程思政



没有实验物理学家,理论物理学家就要漂浮不定。 没有理论物理学家,实验物理学家就会犹豫不决。

—李政道




用最简单的仪器和设备,发现了最根本、最单纯的科学概念,"抓"住了物理学家眼中"最美丽"的科学之魂。

#### Top 10 beautiful experiments

The list below shows the top 10 most frequently mentioned experiments by readers of *Physics World*.

- 1 Young's double-slit experiment applied to the interference of single electrons
- **2** Galileo's experiment on falling bodies (1600s)
- 3 Millikan's oil-drop experiment (1910s)
- **4** Newton's decomposition of sunlight with a prism (1665–1666)
- **5** Young's light-interference experiment (1801)
- **6** Cavendish's torsion-bar experiment (1798)
- **7** Eratosthenes' measurement of the Earth's circumference (3rd century BC)
- 8 Galileo's experiments with rolling balls down inclined planes (1600s)
- **9** Rutherford's discovery of the nucleus (1911)
- 10 Foucault's pendulum (1851)



物理实验帮助学生<mark>深入理解</mark>物理理论知识,进一步提升学生<mark>自主物理学习</mark>的广度和深度,形成物理领域的<mark>创新</mark>

意识和创新能力。也对塑造学生的价值观起着至关重要的作用



# 教学目标三个维度

知识与技能 过程与方法 情感态度与价值观

学懂 做中学 认同

学会 学中做 体会

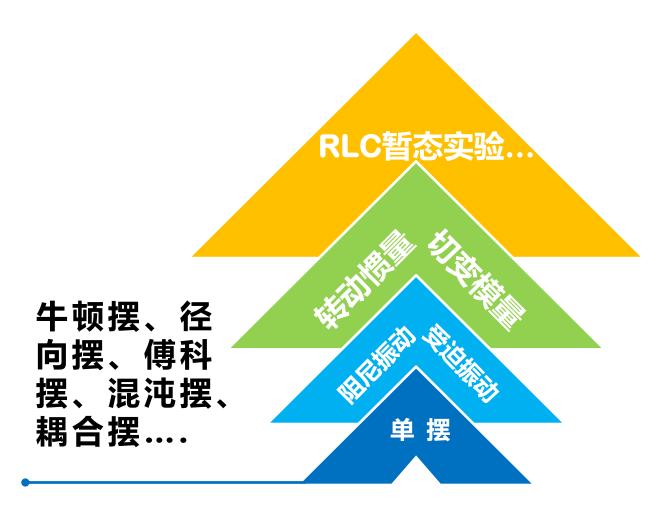
能应用(创新) 反思 内化



# 四结合实验教学

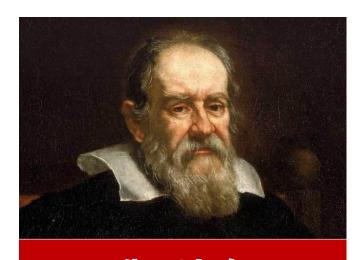
理论+实践

线上+线下


标准+居家

基础+创新

将价值塑造、知识传授、能力培养三者融为一体




# 单摆实验教学设计









伽利略



知识点: 单摆的运动

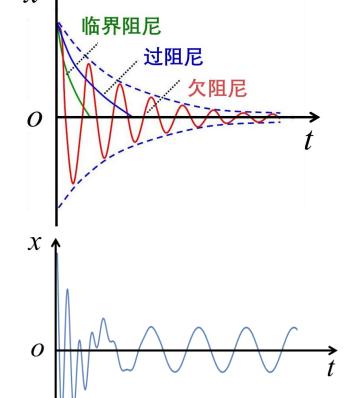
伽利略不但发现了单摆的等时性,而且发现了决定单摆周期的因素。

思政元素: 科学精神、道德品质、民族复兴

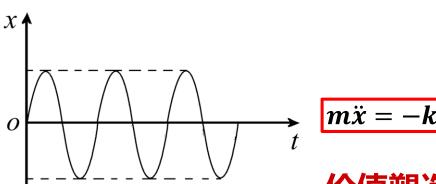
严谨务实: 精益求精的科学精神, 思想实验+控制变量

法实验。

追求真理:对"日心说"的支持。


国家强盛: 北斗三号全球卫星导航系统、欧洲伽利略导

航系统




# 理论MOOC+课中学习



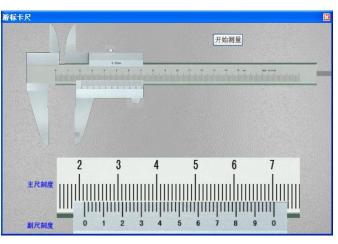


 $m\ddot{x} = -kx - \gamma \dot{x}$ 



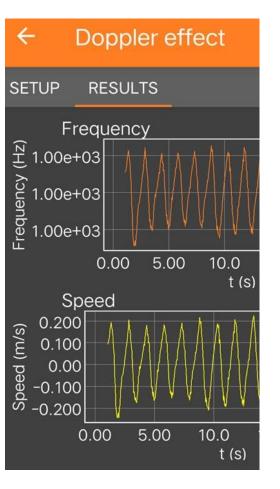
 $m\ddot{x} = -kx$ 

价值塑造: 单摆和人生; 阻尼和挫折


 $m\ddot{x} = -kx$  $-\gamma \dot{x} + F_0 cos\omega t$ 






# 线上+线下,标准+居家





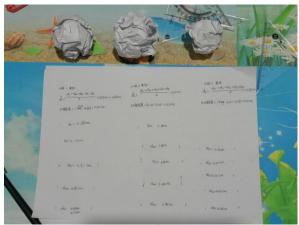






虚拟仿真实验进一步巩固知识传授

居家实验 (Phyphox) 提升能力培养

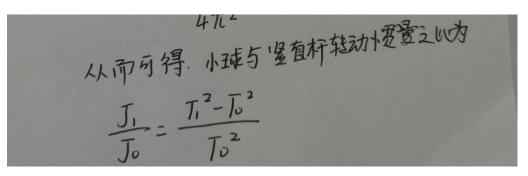


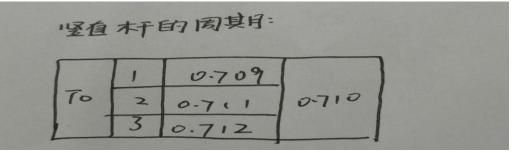


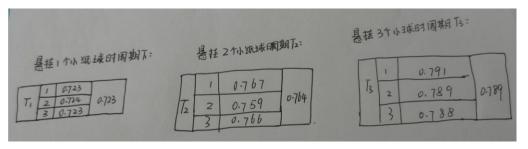

# 从单摆到转动惯量等知识点的拓展

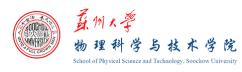
## 摆的直径测量

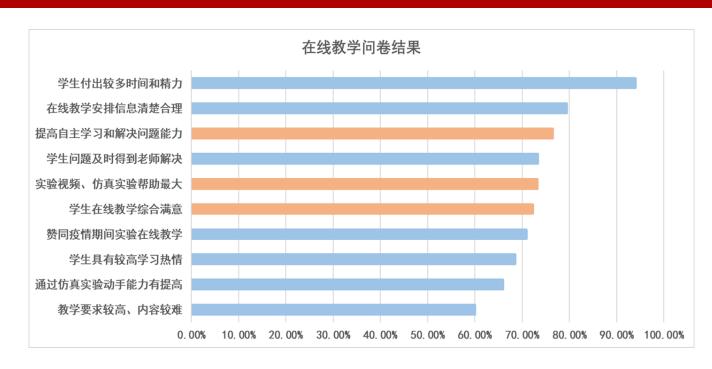






# 摆的周期测量





# 转动惯量数据处理











#### 珊儿 9:32:07

- ·陈老师,您好,以下是本学期第三次教学信息反馈意见。还麻烦您反映给相应的老师。谢谢。
- · 19放射2班: 1.物理实验较难,其中涉及的理论知识很多没有在理论课上讲,感觉实验和理论有些脱节。2.物理虚拟仿真实验平台有些问题,总是闪退,这导致实验操作难以理解,得分不高。3.普通物理实验,这门课在只有一学分的情况下,任务简直比四点五学分的系解还要重。平台bug很多经常导致同学们心情烦躁。老师从来没有讲过课程内容,全凭自己做虚拟实验。
- ·19中药:物理居家实验布置的时间过于不合理,6.15早上发布,要求6.18交,中间还有课,算下来根本没多少时间能做实验



通过在家做的几个有趣的物理小实验,我深刻地感受到这件事的意义所在。他不仅能传播科学知识,培养我们的动手能力,激励我们勇于创新,提高我们的综合素质,扩宽我们的视野,激发我们对科学奥妙的探究意识。总之,我觉得这件事既有趣又有意义,赞!

# 落实立德树人根本任务

以"一流课程"建设为目标

使物理实验课程具有高阶性、创新性和挑战度



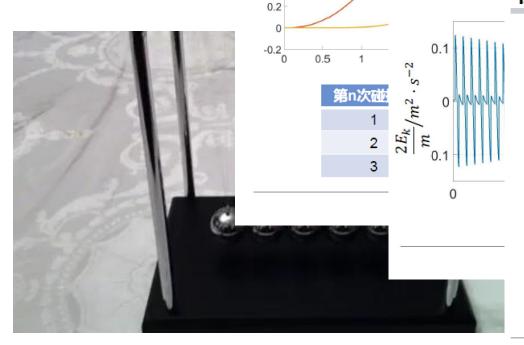
# 创新实验的课后研习—牛顿摆

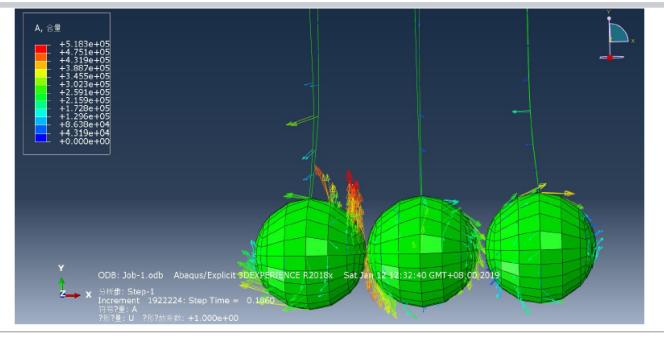
#### 15. Newton's Cradle

The oscillations of a Newton's c rest. Investigate how the rate of parameters such as the number

#### 理论分析

三次碰撞后


0.4


#### 理论分析

基于弹性接触的其他耗散项  $F = -\gamma \frac{d}{dt} (\Delta x^{\alpha})$  —— —— 粘弹性因子

 $m\ddot{x}_n - k(x_n)$ 

#### 模拟仿真——加速度矢量图





# 三、怎么看今后物理实验课程思政



- 课程思政不是把思政课的内容简单照搬到专业课程,不是专业课的"思政化"。
- 课程思政是教师对专业课内容、方法的重新挖掘、梳理和认识。
- 课程思政是教师的常态工作, 教师先受教育的自觉性。

## 教师教学的思政元素





价值 埋 造 造

## 教学内容的思政元素











## 课程思政



**Ideological and Political Theories Teaching in All Course** 

# 谢谢大家!