文章编号:1005-4642(2020)12-0021-07

RLC 谐振与物理共振的原理共性

李潮锐^{a,b}

(中山大学 a. 物理学院; b. 物理国家级实验教学示范中心, 广东 广州 510275)

摘 要:描述 RLC 回路特性的二阶微分方程与受迫振动的动力学方程具有相似的物理涵义,后者可用于描述核磁 共振的物理原理,而前者则是核磁共振测量的技术原理.可见,RLC 谐振、经典振动和核磁共振三者存在明显的原理共 性,而 RLC 谐振实验分析是理解共振物理原理的重要基础.通过回路电阻 R 所产生的阻尼作用,深入分析 RLC 谐振稳 态频域和暂态时域特性及其物理涵义.频域半高全宽与暂态时域弛豫时间随阻尼变化关系提供了深刻理解核磁共振成 像的物理基础.

关键词:受迫振动;核磁共振;弛豫时间;频率特性 中图分类号:O321;O482.532;TM131 文献标识码:A DOI:10.19655/j.cnki.1005-4642.2020.12.004

核磁共振是量子现象,但通常本科量子力学 课程未能对核磁共振吸收频域展宽和时域弛豫给 出严谨的理论描述,从而也增加了核磁共振实验 的教学难度. 由经典振动动力学可知,共振展宽 和弛豫等现象源于阻尼力(矩)的作用. 基于角动 量定理并引入阻尼力矩的核磁共振半经典理论, 可以得到与经典共振相似的动力学行为的布洛赫 方程组. 另一方面,由于 RLC 电路稳态和暂态过 程与经典受迫、共振和阻尼振动等现象的频域和 时域特性相似^[1],可以认为 RLC 谐振、经典共振 和核磁共振(布洛赫方程组)三者具有明显的物理 原理共性. 关注上述逻辑关系,既有助于深刻理 解核磁共振的物理原理,又使核磁共振实验事实 更加浅显易懂.相对于经典振动实验观测,RLC 电路谐振特性测量方法更简单,且易于调节实验 条件而直观地展示共振展宽和弛豫等实验事实. 文献[2-4]已介绍 RLC 电路相位测量及其阻抗或 导纳分析方法,本文重点分析 RLC 电路中各元件 (或组合)的作用及其与共振物理参量之间的对应 关系.根据基尔霍夫电压定律和电流定律分别建 立 RLC 串联电路和并联电路的二阶微分方程, 分析表明RLC串联电路中电容C两端的电压和

RLC 并联电路中电感 *L* 两端的电压分别类似于 经典振动的振动位移和振动速度,利用频域和时 域实验事实展示 *RLC* 电路与经典振动的物理共 性. 由布洛赫方程组得到核磁共振半经典动力学 描述,结合核磁共振实验事实,凸显 *RLC* 谐振、经 典共振和核磁共振的原理共性.

1 实验技术方法

RLC 串联电路如图 1 所示,电感 L、电容 C、 (波段开关)步进式电位器 R_s 和电压源(经隔离 变压器)组成串联回路.回路串联电阻 R 由电位 器 R_s 和电感 L 的内部损耗电阻 R_L 串联而成的 等效电阻.

收稿日期:2020-06-26;修改日期:2020-09-13 基金项目:中山大学物理学人才培养支撑条件建设项目(No. J1210034);中山大学本科教学质量工程 项目(No. 2018WL-ZLJG026,No. 2019WL-ZLJG004) 作者简介:李潮锐(1962-),男,广东汕头人,中山大学物理学院副教授,博士,主要从事凝聚态电磁性 质研究. E-mail;zdstlcr@mail.sysu.edu.cn

第 40 卷

观测响应量 u_c 及 du_c/dt 稳态频域特性时, 使用泰克示波器 MDO4034 观测 1~5 间电压 u_E 、 3~4 间电压 u_c (使用差分探头)和 2~3 间电压 u_s . MDO4034 内置波形发生器提供频率可调的 简谐源信号.

观测响应量 u_c 及 du_c/dt 暂态时域过程时, 信号采样方法同上. MDO4034 内置波形发生器 输出合适固定频率的方波源信号.

RLC 并联电路如图 2 所示,电感 *L*、电容 *C* 和(波段开关)步进式电位器 R_P 先并联,再与取 样电阻 R_s 和电压源(经隔离变压器)组成回路. *RLC* 并联回路等效电阻 *R* 由电位器 R_P 和电感 *L* 的内部损耗电阻 R_L 并联而成.

图 2 RLC 并联实验接线图

观测响应量变化率 di_L/dt 稳态频域过程时, 使用泰克示波器 MDO4034 观测 1~5 间电压 u_E 、 3~4 间电压 u_C (使用差分探头)和 2~3 间电压 u_s . *RLC* 并联回路驱动电流 i_E 由取样电阻 R_s 两 端压降 u_s 求得. MDO4034 内置波形发生器提供 频率可调的简谐源信号.

实验元件参量:C=13.25 nF,L=19.63 mH, 损耗电阻 $R_L=82.39 \Omega$. 图 1 中 R_s 步进阻值 39 Ω ; 图 2 中 R_P 步进阻值 39 k Ω ,取样电阻 $R_s=99.16 \Omega$.

采用文献[5]方法测量核磁共振稳态吸收,使 用苏州纽迈核磁共振成像分析仪 NMI120-015V-I 观测横向弛豫. 实验样品为 CuSO4 饱和水溶液.

2 实验结果及分析

2.1 RLC 串联谐振特性

根据基尔霍夫电压定律,图1*RLC*串联回路 电压满足

$$u_L + u_R + u_C = u_E, \qquad (1)$$

其中, u_L , u_R 和 u_C 分别为电感L、电阻R和电容 C两端电压(压降), u_E 为信号源经隔离变压器输 出电压. 若回路电流为 *i*,则

$$i = C \, \frac{\mathrm{d}u_C}{\mathrm{d}t},\tag{2}$$

$$u_R = iR = RC \frac{\mathrm{d}u_C}{\mathrm{d}t},\tag{3}$$

$$u_L = L \frac{\mathrm{d}i}{\mathrm{d}t} = LC \frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2}.$$
 (4)

考虑信号源输出电压为 $u_E = u_0 \cos(\omega t)$ 情形,将 式(3)和(4)代入式(1),可得

$$LC \frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + RC \frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = u_0 \cos(\omega t). \quad (5)$$

若以 $u_0 \cos(\omega t)$ 为激励而 u_c 为响应量,式 (5)与弹簧振子的动力学方程^[6]比较可知,式(5) 左侧分别为惯性项、阻尼项和弹性项,右侧为激励 项(或策动项).式(5)可改写为

$$\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + 2\beta \frac{\mathrm{d}u_C}{\mathrm{d}t} + \omega_0^2 u_C = \omega_0^2 u_0 \cos(\omega t), \quad (6)$$

其中,阻尼系数 $\beta = \frac{R}{2L}$,固有频率 $\omega_0 = \sqrt{\frac{1}{LC}}$.考虑弱阻尼情形,方程(6)的通解为

 $u_{C} = A_{0}(\omega) \cos(\omega t + \varphi) + B_{0}(\omega_{1}) e^{-\beta t} \cos(\omega_{1} t + \varphi_{1}),$ (7)

其中, $\omega_1 = \sqrt{\omega_0^2 - \beta^2}$.式(7)右侧2项分别代表 *RLC*串联电路中由电容C两端电压 u_c 所描述的 稳态和暂态过程.式中, $A_0(\omega)$ 和 φ 分别为稳态信 号幅值及相对于激励(策动)的相位差, $B_0(\omega_1)$ 和 φ_1 分别为暂态信号幅值和初相位.上述分析表 明,*RLC*串联电路阻尼系数 β 由电阻*R*和电感*L* 确定,它同时影响响应量 u_c 、谐振频率 ω_1 和衰减 时间 τ .

2.1.1 RLC 串联稳态频域

由上述分析可知, *RLC* 串联电路由式(6) 描 述电容 *C* 两端电压 u_c 对电压源信号 $u_0 \cos(\omega t)$ 激励作用的响应. 实验事实也显示稳态过程 u_c 与激励源信号 $u_0 \cos(\omega t)$ 存在相位差 φ , 而且响应 量 u_c 稳态过程幅值 $A_0(\omega)$ 和相位 φ 都随激励频 率而改变.

图 3 显示了响应量幅值 $A_0(\omega)$ 及其相位 φ 随 频率 ω 变化情况,可见处于谐振频率 ω_1 时 φ 为 $\frac{\pi}{2}$ 且 $A_0(\omega)$ 位于幅值峰.图 3 结果实验条件: $u_0 =$ 1.00 V(归一化处理),串联 $R_s = 193.73 \Omega$.实验 结果表明,*RLC* 串联电路稳态过程响应量 u_c 与 弹簧振子振动位移的物理过程相同.

图 3 RLC 串联响应量幅值及其相位频率特性

由式(3)可知,若测量 *RLC* 串联电路中电阻 *R* 两端电压 u_R 获得回路电流 *i*,则可得响应量 u_C 变化率 du_C/dt 的实验值.由于电阻 *R* 包含了电 感损耗电阻 R_L 而无法直接测量电压 u_R ,实验改 由测量电位器 R_s 两端的电压 u_s 获得回路电流 *i*.

考虑 RLC 串联回路的电流 i 关系

$$i = \frac{u_{\rm S}}{R_{\rm S}} = C \, \frac{\mathrm{d}u_C}{\mathrm{d}t},\tag{8}$$

可得

$$\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} = \frac{u_{\mathrm{S}}}{CR_{\mathrm{S}}}.$$
(9)

由式(9)可知,通过测量 R_s 两端电压 u_s 可得 到响应量 u_c 变化率 du_c/dt 的实验数据.

图 4 显示与图 3 相同实验参量的稳态过程响 应量变化率 du_c/dt 的幅值和相位随频率变化情况. 与图 3 比较可知,图 4 所示响应量变化率 du_c/dt 的相位比响应量 u_c 的相位超前 $\pi/2$. 由 实验结果可见,*RLC* 串联电路稳态过程响应量变 化率 du_c/dt 与弹簧振子的振动速度的物理过程 相似.

图 4 RLC 串联响应量变化率幅值及其相位频率特性

2.1.2 *RLC* 串联暂态时域 考虑电压源输出信号为低频方波,即 *u_E* 交替

输出 2 个不同电平信号,使电容 *C* 两端电压 u_c 都 经历了暂态过程才到达稳定状态,或称弛豫过程. 在弱阻尼情形,*RLC* 串联响应量 u_c 及其变化率 du_c/dt 暂态时域过程如图 5 所示.图 5 结果实验 条件:方波幅值 $V_{pp} = 5.00$ V,频率 f = 500 Hz,步 进式电位器阻值为 38.50 Ω.

图 5 RLC 串联电路响应量及其变化率暂态过程

响应量 u_c 暂态过程由式(7)右侧第 2 项描述,

 $u_{c} = B_{0}(\omega_{1}) e^{-t/\tau} \cos(\omega_{1}t + \varphi_{1}),$ (10) 其中, $\tau = 1/\beta$ 为衰减时间或弛豫时间.由式(10) 可知,响应量变化率 du_{c}/dt 暂态时域具有与响应 量 u_{c} 相似的衰减过程,而且由图 5 的结果得到了 验证.

上述理论分析和实验事实表明,*RLC* 串联电路响应量 u_c 等效于弹簧振子的振动位移,而 u_R 或 u_s 则包含着响应量变化率 du_c/dt 信息,即类比于弹簧振子的振动速度.不管是图 3 与图 4 稳态过程,还是图 5 暂态过程,实验结果都显示响应量 u_c 与变化率 du_c/dt 相位差 $\pi/2$.根据式(9)由 u_s 获得 du_c/dt ,且采用差分探头解决信号共地问题,从而实现 u_c 和 du_c/dt 两者同步测量.图 6 为 *RLC* 串联电路谐振相图.可见,其结果与经典振动相图^[7]一致.

2.2 RLC 并联谐振特性

根据基尔霍夫电流定律,图 2 节点 3 或 4 处 的电流满足

$$i_L + i_R + i_C = i_E$$
, (11)

其中, i_L , i_R 和 i_C 分别为流经电感L、电阻R和电容C的电流,而 i_E 则为信号源经隔离变压器输出的电流.若RLC并联电路两端电压为u,那么

$$u = L \frac{\mathrm{d}i_L}{\mathrm{d}t},\tag{12}$$

$$i_R = \frac{u}{R} = \frac{L}{R} \frac{\mathrm{d}i_L}{\mathrm{d}t},\tag{13}$$

$$i_C = C \frac{\mathrm{d}u}{\mathrm{d}t} = LC \frac{\mathrm{d}^2 i_L}{\mathrm{d}t^2}, \qquad (14)$$

考虑驱动电流为 $i_E = i_0 \cos(\omega t)$ 情形,将式(13)和 (14)代入式(11),可得

$$LC \frac{\mathrm{d}^2 i_L}{\mathrm{d}t^2} + \frac{L}{R} \frac{\mathrm{d}i_L}{\mathrm{d}t} + i_L = i_0 \cos(\omega t). \quad (15)$$

若以 $i_0 \cos(\omega t)$ 为激励而 i_L 为响应量,同理 可知,式(15) 左侧分别为惯性项、阻尼项和弹性 项,右侧为激励项(或策动项).式(15) 可改写为

$$\frac{d^{2} i_{L}}{dt^{2}} + 2\beta \frac{di_{L}}{dt} + \omega_{0}^{2} i_{L} = \omega_{0}^{2} i_{0} \cos (\omega t), \quad (16)$$

其中,阻尼系数
$$\beta = \frac{1}{2RC}$$
,固有频率 $\omega_0 = \sqrt{\frac{1}{LC}}$.考

虑弱阻尼情形,方程(16)的通解为

$$i_{L} = C_{0}(\omega) \cos(\omega t + \varphi) + D_{0}(\omega_{1}) e^{-\beta t} \cos(\omega_{1} t + \varphi_{1}),$$
(17)

其中, $\omega_1 = \sqrt{\omega_0^2 - \beta^2}$.式(17)右侧 2 项分别代表 *RLC* 并联电路中流经电感 *L* 电流 *i*_{*L*} 所描述的稳 态和暂态过程.式中,*C*₀(ω)和 φ 为稳态信号幅值 及相对于激励(策动力)的相位差,*D*₀(ω_1)和 φ_1 为暂态信号幅值和初相位.上述分析表明,*RLC* 并联电路阻尼系数 β 由电阻 *R* 和电容 *C* 确定,它 同时影响响应量 *i*_{*L*}、谐振频率 ω_1 和弛豫时间 *τ*.

在 *RLC* 串联电路,由式(6)分析电容 *C* 两端 电压 u_c 对电压源信号 $u_0 \cos(\omega t)$ 激励作用的响 应.对 *RLC* 并联电路,在电流源信号 $i_0 \cos(\omega t)$ 激励作用下,以流经(纯)电感 *L* 电流 i_L 为响应量 的谐振特性则用式(16)描述.由图 2 电路可知, 实验上难以直接测量响应量 i_L ,但是可以通过测 量 *RLC* 并联电路两端电压 *u* 再由式(12)求得响 应量变化率 di_L/dt .上述分析可见:*RLC* 并联电 路以电流激励,而非串联电路所用的电压激励; *RLC* 并联电路以响应量变化率为直接测量物理 量,而串联电路则响应量及其变化率都可以直接 测量.

图 7 显示了响应量变化率 di_L/dt 幅值及其 相位随驱动(策动)频率 ω 变化情况.图 7 结果的 实验条件: $i_0 \approx 10.00 \text{ mA}(u_s = 1.00 \text{ V}, 归 - \ell L)$, 并联 $R_P = 39 \text{ k}\Omega$.与 *RLC* 串联电路所得的图 3 和图 4 实验结果比较,可见 *RLC* 并联电路稳态过 程响应量变化率 di_L/dt 与经典振动速度的物理 过程相似.

图 7 RLC 并联响应量变化率幅值和相位频率特性

2.3 暂态弛豫与稳态展宽

对于确定的电感 L 和电容 C, RLC 串联和并 联电路具有相同的固有频率 $\omega_0 = \sqrt{\frac{1}{LC}}$, 而电阻 R则以不同形式影响着阻尼系数 β . 式(7)和式(17) 表明, 阻尼系数 β 影响响应量谐振频率 ω_1 和弛豫 时间 τ . 实验结果也显示, 阻尼系数还影响图 3、 图 4 和图 7 中幅值 -频率谐振峰的半高全宽 Δf . 谐振频率 $\omega_1 = \sqrt{\omega_0^2 - \beta^2}$ 是描述稳态频域和暂态时 域的共同参量, 而半高全宽和弛豫时间则分别表 征稳态频域和暂态时域的独立参量. 因此, 分析 半高全宽 Δf 和弛豫时间 τ 与阻尼系数 β 关系是 探讨稳态频域与暂态时域物理共性的基础.

由步进式电位器调节 R_s ,从而改变回路电阻 R,根据式(6)即可改变回路阻尼系数 β .图 8 和 图 9 分别为不同阻尼(即不同的回路电阻 R)条件 下 RLC 串联电路响应量 u_c 和变化率 du_c/dt 幅 值频率特性.实验结果表明,随阻尼增强(即随 R_s 增大),稳态过程响应量 u_c 及其变化率 du_c/dt 频域半高全宽 Δf 逐渐增大,同时谐振频率 ω_1 向 低频端移.

由阻尼系数
$$\beta = \frac{R}{2L}$$
和弛豫时间 $\tau = \frac{1}{\beta}$ 可知, 弛

豫时间 τ 与阻尼系数 β 为反比例关系.图 10 实验 结果验证了上述分析.由图 10 可见,随阻尼增 强,暂态时域弛豫时间 τ 随之缩短.

图 8 不同阻尼情形 RLC 串联 uc 幅值频率特性

图 9 不同阻尼情形 RLC 串联 du_C/dt 幅值频率特性

图 10 RLC 串联回路暂态弛豫时间 τ 与电阻 R 的关系

图 $8 \sim 10$ 结果表明,随阻尼变化,当稳态过 程频域半高全宽 Δf 增大则其对应的暂态时域弛 豫时间 τ 缩短.上述实验结果与经典振动理论^[6] 描述一致.

对于 *RLC* 并联情形,式(16)中阻尼系数 $\beta = \frac{1}{2RC}$ 表明,当回路并联电阻 *R* 减小,阻尼系数 β 随 之增大.根据振动分析结果^[6],稳态过程频域半 高全宽 Δf 也将逐渐增大. 实验通过测量 *RLC* 并 联两端电压 u,由式(12)得到图 11 所示结果. 由 图 11 可见,*RLC* 并联稳态频域半高全宽 Δf 与阻 尼强度变化关系符合经典振动理论的描述.

图 11 不同阻尼情形 RLC 并联 di_L/dt 幅值频率特性

2.4 核磁共振半经典理论

根据角动量定理并引入阻尼力矩,描述核磁 共振半经典理论的布洛赫方程为

$$\frac{\mathrm{d}\boldsymbol{M}}{\mathrm{d}t} = -\gamma \boldsymbol{M} \times \boldsymbol{B} - \boldsymbol{T}_{\mathrm{D}}, \qquad (18)$$

其中,B,M, $T_{\rm D}$ 和 γ 分别为外磁场、单位体积磁 矩、阻尼力矩和磁旋比.

考虑外磁场

 $B = [b_0 \cos(\omega t)]i - [b_0 \sin(\omega t)]j + B_0 k,$ 其中, $[b_0 \cos(\omega t)]i - [b_0 \sin(\omega t)]j$ 为圆偏振射 频磁场(激发光子), 且 $b_0 \ll B_0$, 式(18)可改写为 布洛赫方程组

$$\frac{\mathrm{d}M_x}{\mathrm{d}t} = \gamma \left[-M_z b_0 \sin(\omega t) - B_0 M_y \right] - \frac{M_x}{T_2},$$
(19)
$$\frac{\mathrm{d}M_y}{\mathrm{d}t} = \gamma \left[-M_z b_0 \cos(\omega t) + B_0 M_x \right] - \frac{M_y}{T_2},$$
(20)
$$\frac{\mathrm{d}M_z}{\mathrm{d}t} = \gamma \left[M_x b_0 \sin(\omega t) + M_y b_0 \cos(\omega t) \right] - \frac{M_z - M_z^0}{T_1}$$

(21)

式中, T_1 和 T_2 分别为纵向弛豫时间和横向弛豫 时间,前者描述受激核磁矩处于激发态的寿命,后 者还考虑了自旋-自旋作用所引起的退相干.显 然, T_2 (远)小于 T_1 .为了简化数学处理,分析 M_x 和 M_y 随时间变化时,可近似认为 M_z 不变.同 时,忽略 B_0 不均匀性.

利用拉莫频率 $\omega_0 = \gamma B_0$,且令 $\eta = \gamma M_z b_0$,分 别对式(19)和式(20)再次微分,可得 (26)

(27)

$$\frac{\mathrm{d}^2 M_x}{\mathrm{d}t^2} = -\eta \omega \cos(\omega t) - \omega_0 \frac{\mathrm{d}M_y}{\mathrm{d}t} - \frac{1}{T_2} \frac{\mathrm{d}M_x}{\mathrm{d}t},$$
(22)

$$\frac{\mathrm{d}^2 M_y}{\mathrm{d}t^2} = \eta \omega \sin(\omega t) + \omega_0 \frac{\mathrm{d}M_x}{\mathrm{d}t} - \frac{1}{T_2} \frac{\mathrm{d}M_y}{\mathrm{d}t}. \tag{23}$$

首先,将式(19)和式(20)分别代入式(22)和 式(23)右侧,可得到

$$\frac{\mathrm{d}^2 M_x}{\mathrm{d}t^2} = \eta(\omega_0 - \omega) \cos(\omega t) - \omega_0^2 M_x - \frac{1}{T_2} \frac{\mathrm{d}M_x}{\mathrm{d}t} - \frac{\omega_0 M_y}{T_2},$$
(24)

$$\frac{\mathrm{d}^2 M_y}{\mathrm{d}t^2} = -\eta(\omega_0 - \omega) \sin(\omega t) - \omega_0^2 M_y - \frac{1}{T_2} \frac{\mathrm{d}M_y}{\mathrm{d}t} - \frac{\omega_0 M_x}{T_2}.$$
(25)

再利用式(19)中 M_y 与 M_x 和 d M_x/dt 关系,及式 (20)中 M_x 与 M_y 和 d M_y/dt 关系,式(24)和式 (25)可改写为

$$\frac{\mathrm{d}^2 M_x}{\mathrm{d}t^2} + \frac{2}{T_2} \frac{\mathrm{d}M_x}{\mathrm{d}t} + (\omega_0^2 + T_2^{-2}) M_x = h_0 \cos(\omega t + \theta),$$

$$\frac{\mathrm{d}^2 M_y}{\mathrm{d}t^2} + \frac{2}{T_2} \frac{\mathrm{d}M_y}{\mathrm{d}t} + (\omega_0^2 + T_2^{-2}) M_y = -h_0 \sin (\omega t + \theta),$$

式中,

$$h_0 = \eta \sqrt{(\omega_0 - \omega)^2 + T_2^{-2}},$$

$$\theta = \arctan \frac{1}{(\omega_0 - \omega) T_2}.$$

令复数 $M_{xy} = M_x + iM_y$,则式(26)和式(27)可合 并为

 $\frac{\mathrm{d}^2 M_{xy}}{\mathrm{d}t^2} + 2\beta \frac{\mathrm{d}M_{xy}}{\mathrm{d}t} + (\omega_0^2 + T_2^{-2})M_{xy} = h_0 \exp\left[-\mathrm{i}(\omega t + \theta)\right],$ (28)

式中, $\beta = T_2^{-1}$.由式(28)可见,由布洛赫方程组所 得到核磁共振半经典动力学方程与 *RLC* 谐振式 (6)和式(16)都具有经典受迫阻尼振动特性,其共 振频率和共振弛豫时间具有相同的物理含义.值 得一提的是,由式(28)所描述的核磁共振频率

$$\omega = \sqrt{(\omega_0^2 + T_2^{-2}) - \beta^2} = \omega_0$$
,

即为拉莫频率,它与阻尼系数无关.另一差别是, 简单经典振动或者 *RLC* 谐振使用线偏振驱动,而 核磁共振采用圆偏振驱动.在核磁共振过程,原 子核磁矩和激发光子为整体必须同时满足能量守 恒和角动量守恒,圆偏振驱动是角动量守恒所要 求的.实验上直接提供圆偏振激发光子是困难 的,通常使用线偏振射频场驱动.根据线偏振可 以分解为互反方向同频圆偏振原理,其中之一可 以产生有效核磁共振,另一个圆偏振光子则不起 作用(质子核自旋能级中不存在可被激发的其他 激发态).

考虑弱阻尼情形,方程(26)和(27)的解为 $M_x = \xi_x(\omega)\cos(\omega t + \phi) + \zeta_x(\omega_0)e^{-t/T_2}\cos(\omega_0 t + \phi_0),$ (29)

 $M_{y} = \xi_{y}(\omega) \sin(\omega t + \phi) + \zeta_{y}(\omega_{0}) e^{-t/T_{2}} \sin(\omega_{0} t + \phi_{0}),$ (30)

上述等式中,右侧两项分别代表核磁共振响应量 M_x 和 M_y 所描述的稳态和暂态(横向弛豫)过程. 其中, $\xi_x(\omega)$ 和 $\xi_y(\omega)$ 与 ϕ 分别为稳态信号幅值及 相对于激励(激发)的相位差,而 $\xi_x(\omega_0)$ 和 $\xi_y(\omega_0)$ 与 ϕ_0 则分别为暂态信号幅值与初相位.

事实上,式(29)和式(30)描述同一物理过程 在 xy平面的投影,令系数 $\xi_x(\omega) = \xi_y(\omega) = \xi(\omega)$ 以及 $\zeta_x(\omega_0) = \zeta_y(\omega_0) = \zeta(\omega_0)$,式(29)和(30)可以 简化为

 $M_{x} = \boldsymbol{\xi}(\boldsymbol{\omega}) \cos \left(\boldsymbol{\omega}t + \boldsymbol{\phi}\right) + \boldsymbol{\zeta}(\boldsymbol{\omega}_{0}) e^{-t/T_{2}} \cos \left(\boldsymbol{\omega}_{0}t + \boldsymbol{\phi}_{0}\right),$ (31)

 $M_{y} = \xi(\omega) \sin (\omega t + \phi) + \zeta(\omega_{0}) e^{-t/T_{2}} \sin (\omega_{0} t + \phi_{0}).$ (32)

在上述分析中,考虑了 $T_2(\overline{u})$ 小于 T_1 ,并假 设在 M_x 和 M_y 变化过程中 M_z 近似不变. 尽管 图 12 实验结果来自纵向弛豫和横向弛豫的共同 贡献,但是不同浓度 CuSO4 水溶液的共振展宽与 弛豫关系与 *RLC* 谐振或经典振动规律是一致的.

图 12 核磁共振稳态吸收

"尾波"是核磁共振弛豫的实验事实^[7].图 13 显示经过 90[°]射频脉冲作用且撤除之后,核磁矩 处于 xy 平面绕 z 轴(即 B_0 方向)进动时,自由感 应衰减(Free induction decay, FID)信号在 x 方 向和 y 方向的投影,两者的相位差 $\pi/2$. 当忽略 B₀ 不均匀性,由 FID 信号可得横向弛豫时间 T_2 . 若对 FID 时域信号离散傅里叶分析,可获得共振 稳态频域分布^[8-9]. 其结果与图 12 相似,但是可 以更准确地描述自旋 -自旋相互作用对频域展宽 的影响.

图 14 再次显示图 13 中 FID 信号的 $\pi/2$ 相位 差,更重要的是,它直观地展示了核磁矩 M 末端 在 xy 平面由外到里的螺线运动轨迹. 有别于图 6 或经典共振相图,它是同一物理量(响应量)在 正交方向的投影,图 14 结果也反映了由方程(28) 所描述的处于外磁场 B_0 中核磁矩 M 对圆偏振驱 动的动力学响应.

图 13 核磁共振横向弛豫 FID 信号

图 14 核磁矩末端在 xy 平面运动轨迹

综合上述分析可知,不管是 *RLC* 谐振方程式 (6)与式(16),还是核磁共振方程式(28),都可由 简单受迫阻尼振动方程

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\beta \,\frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 \,x = f(\omega) \tag{33}$$

统一描述,充分说明这些过程存在物理原理共性, 其共振频率和阻尼系数(共振弛豫时间)具有相同 的物理涵义.针对不同情形的关键差异体现于:

1)*RLC*谐振频率和经典机械共振频率与系统内部损耗有关,而核磁共振频率(即为拉莫频率)与阻尼系数无关;

2)*RLC* 谐振和经典机械共振由线偏振驱动 产生,实验上采用线偏振分解实现核磁共振的圆 偏振有效激发.

3 结束语

实验事实是物理教学不可或缺的重要基础. 显然,对实验现象深刻理解更有助于透彻讲解物 理概念和原理.核磁共振物理原理和实验技术原 理就是很有代表性的物理课程教案.核磁共振半 经典描述与经典振动理论相似,而核磁共振测量 则是 *RLC* 谐振特性的技术应用.根据基尔霍夫 定律及实验事实的分析表明,*RLC* 谐振特征与经 典振动具有相似的物理行为.另一方面,由布洛 赫方程组所得到核磁共振半经典动力学方程与受 迫阻尼经典振动方程或 *RLC* 谐振方程相似.由 此可见,利用 *RLC* 谐振实验物理分析有助于掌握 核磁共振原理.

参考文献:

- [1] 沈元华,陆申龙. 基础物理实验[M]. 北京:高等教 育出版社,2003:189-193.
- [2] 李潮锐. 数字示波器测量 RLC 谐振特性[J]. 物理 实验,2018,38(4):24-26,29.
- [3] 李潮锐. 数字电桥测量 LC 谐振特性[J]. 物理实 验,2017,37(12):21-24.
- [4] 李潮锐. LC 谐振参量的直观测量方法[J]. 物理实 验,2019,39(4):32-35.
- [5] 李潮锐. 连续波核磁共振吸收的频域测量[J]. 物 理实验,2017,37(10):26-29.
- [6] 赵凯华,罗蔚茵.新概念物理教程·力学[M].2版.北京:高等教育出版社,2004:256-262.
- [7] 李潮锐. 连续波核磁共振实验问题探究[J]. 物理 实验,2019,39(8):31-36,44.
- [8] 李潮锐,黄镜荣.玻尔摆实验数据分析方法拓展 [J].物理实验,2004,24(S1):1-3.
- [9] 李潮锐. 振动频域特性与时域测量的分析[J]. 物 理实验,2020,40(2):12-15.

(下转43页)

频率的连续变化,可以精确地得出超声在水中的 声速.并且采用计算机处理数据,减少了误差.

致谢:感谢北京师范大学物理学系的白在桥 副教授、李晓文副教授对本实验提供的帮助.

参考文献:

- [1] 肖安琪,刘烈. 超声光栅研究声速与溶液浓度及温 度的关系 [J]. 实验室研究与探索,2012,31(3):44-46,67.
- [2] 曾育锋,涂辉. 超声光栅测量液体体积弹性模量实验

研究[J]. 实验技术与管理,2012,29(4):53-54,67.

- [3] 薄春卫. 超声光栅测液体中声速实验的改进[J]. 实验室研究与探索,2012,31(5):61-62,69.
- [4] 叶文江,李儒颂,邢红玉,等. 超声光栅测量液体中 声速的改进[J]. 实验室研究与探索,2015,34(11): 26-29.
- [5] 李武军,王晓颖. 声光 Naman-Nath 衍射特性的研 究[J]. 大学物理,2009,28(9):25-27.
- [6] 张成义. 超声光栅测声速实验的量化分析 [J]. 大 学物理实验,2006,19(1):17-19.

Improvement of measuring sound velocity in water using ultrasonic grating by light intensity measuring method

DONG Wei-cen, HE Xu-dong

(Department of Physics, Beijing Normal University, Beijing 100875, China)

Abstract: The principle of ultrasonic grating and how to measure the ultrasonic velocity in liquid with this principle were introduced. Using the light intensity measuring method, the ultrasonic frequency was measured when the light intensity of non-zero fringe was maximum. The ultrasonic velocity in water was calculated to be 1 460 m/s by LabVIEW, and was more accurate than the traditional angle-measurement method with spectrometer.

Key words: ultrasonic grating; sound speed; light intensity measuring method; LabVIEW

[责任编辑:郭 伟]

(上接 27 页)

Similarity in principle of RLC and physical resonance

LI Chao-rui^{a, b}

(a. School of Physics; b. National Demonstration Center for Experimental Physics Education, Sun Yat-sen University, Guangzhou 510275, China)

Abstract: The second-order differential equation of RLC circuit has similar physics sense to the dynamic equation of forced vibration. The dynamic equation for vibration can be used to describe the physical principle of nuclear magnetic resonance (NMR), while the differential equation for RLC is the technology principle of NMR measurement. It could be seen that RLC resonance, mechanical vibration and NMR were obviously similar in theory, and RLC resonance experiment analysis was especially important for understanding their physical principles. By means of the damping effect of loop resistance R, the characteristics of RLC resonance in frequency-domains and time-domains, and their physical principles were analyzed. The relationship between the full width at half maximum in frequency-domain and the relaxation time in time-domain with the change of damping provided a deep understanding on MRI.

Key words: forced vibration; nuclear magnetic resonance; relaxation time; frequency characteristic [责任编辑:任德香]