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Study on pectin-based ion buffer layer for resistive switching memory

ZHAO Xiao-ning", YUAN Xiao-ying*, XU Jia-qi*
(a. School of Physics; b. National Demonstration Center for Experimental Physics Education

(Northeast Normal University), Northeast Normal University, Changchun 130024, China)

Abstract. With a biological pectin film prepared by microwave assisted method and used as buffer
layer, the resistive switching memory, Ag/pectin/a-C/Pt, was fabricated. Using atomic force micros-
copy. the current distribution on the surface was characterized, and the ion buffering mechanism of
pectin film was investigated. The resistance change performance and mechanism of the resistive switc-
hing memory based on the pectin film were analyzed. It was found that the buffer layer could reduce
the fluctuation of SET/RESET voltage, improve the switching ratio of high-low resistance states.
Furthermore, multilevel resistance states memory in single device were obtained by controlling the
compliance current.

Key words: resistive switching memory; ion buffer layer; biological pectin film; multilevel resist-

ance states memory

Photonic waveguides based on topological photonic crystals

CHEN Xiao-dong, HE Xin-tao, DONG Jian-wen
(School of Physics, Sun Yat-sen University, Guangzhou 510275, China)

Abstract. Photonic crystal is a type of periodic structure with photonic band-gaps characteristics,
and it has topological properties. Since the state of the optical topological state can bring some new
characteristics to the system, which have the great potential application in the fields of communica-
tion, computing, materials science, etc. , the research on topological photonic crystals has drawed ex-
tensive attention. The development history of topological photonic crystals was reviewed in this pa-
per, the principle and experimental realization of three kinds of topological photonic crystals were in-
troduced as well. The boundary state characteristics of photonic crystals with unidirectional transmis-
sion and anti-scattering transmission properties were analyzed, the structural design and performance
characterization of novel photonic waveguides were showed.

Key words: photonic crystals; topological photonics; photonic waveguide; robust transport
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